Poisson Bracket Formulation of Nematic Polymer Dynamics

نویسنده

  • Randall D. Kamien
چکیده

We formulate the dynamical theory of nematic polymers, starting from a microscopic Poisson bracket approach. We find that the Poisson bracket between the nematic director and momentum depends on the (Maier-Saupe) order parameter of the nematic phase. We use this to derive reactive couplings of the nematic director to the strain rates. Additionally, we find that local dynamics breaks down as the polymers begin to overlap. We offer a physical picture for both results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poisson-bracket approach to the dynamics of bent-core molecules.

We generalize our previous work on the phase stability and hydrodynamic of polar liquid crystals possessing local uniaxial C infinity v symmetry to biaxial systems exhibiting local C2v symmetry. Our work is motivated by the recently discovered examples of thermotropic biaxial nematic liquid crystals comprising bent-core mesogens, whose molecular structure is characterized by a non-polar-body ax...

متن کامل

An Intrinsic Hamiltonian Formulation of the Dynamics of LC-Circuits

First, the dynamics of LC-circuits are formulated as a Hamiltonian system defined with respect to a Poisson bracket which may be degenerate, i.e., nonsymplectic. This Poisson bracket is deduced from the network graph of the circuit and captures the dynamic invariants due to KirchhoWs laws. Second, the antisymmetric relations defining the Poisson bracket are realized as a physical network using ...

متن کامل

Entropy as a Metric Generator of Dissipation in Complete Metriplectic Systems

This lecture is a short review on the role entropy plays in those classical dissipative systems whose equations of motion may be expressed via a Leibniz Bracket Algebra (LBA). This means that the time derivative of any physical observable f of the system is calculated by putting this f in a “bracket” together with a “special observable” F, referred to as a Leibniz generator of the dynamics. Whi...

متن کامل

On the Metriplectic Dynamics for Systems with Internal Degrees of Freedom

Following the revival of interest in the behavior of classical, nonlinear systems, a variety of new theoretical tools was developed to allow for a description of the essential properties of those systems. One of the most powerful mathematical methods developed recently is the Lie-Poisson bracket technique [1], the use of which has led to considerable progress in our understanding of conservativ...

متن کامل

0 M ar 1 99 5 Odd Poisson Bracket in Hamilton ’ s Dynamics

Some applications of the odd Poisson bracket to the description of the classical and quantum dynamics are represented.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999